Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[dibromidocadmium]- μ_2 -1,1'-(butane-1,4-diyl)bis(pyridinium-4carboxylate)] monohydrate]

Feijun Guo,^a Yuan Li,^b Simin Yang^b and Ruizhan Chen^{b*}

^aThe Institute of Higher Education, Changchun Normal University, Changchun 130032, People's Republic of China, and ^bCollege of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China Correspondence e-mail: rzchen2011@yahoo.cn

Received 26 April 2011; accepted 3 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; R factor = 0.042; wR factor = 0.118; data-to-parameter ratio = 14.9.

In the title compound, {[CdBr₂(C₁₆H₁₆N₂O₄)]·H₂O}_{*n*}, the Cd^{II} ion is six-coordinated by a Br₂O₄ donor set, with four O atoms from two bridging 1,1'-(butane-1,4-diyl)bis(pyridinium-4-carboxylate) ligands. The ligands link the Cd^{II} ions into a zigzag chain extending along [011]. O-H···O and O-H···Br hydrogen bonds involving the uncoordinated water molecules connect the chains.

Related literature

For the design and synthesis of coordination polymers, see: Li *et al.* (2005). For a related structure, see: Ma *et al.* (2000).

Experimental

Crystal data

 $\begin{bmatrix} CdBr_2(C_{16}H_{16}N_2O_4) \end{bmatrix} \cdot H_2O\\ M_r = 590.53\\ Triclinic, P\overline{1}\\ a = 7.6529 (5) Å\\ b = 9.3969 (6) Å\\ c = 14.0198 (9) Å\\ a = 74.410 (1)^\circ\\ \beta = 87.060 (2)^\circ\\ \end{bmatrix}$

 $\gamma = 71.581 (1)^{\circ}$ $V = 920.75 (10) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 5.56 \text{ mm}^{-1}$ T = 296 K $0.20 \times 0.17 \times 0.16 \text{ mm}$ $R_{\rm int} = 0.013$

5114 measured reflections

3600 independent reflections

3238 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.34, T_{max} = 0.41$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$ $vR(F^2) = 0.118$	H atoms treated by a mixture of independent and constrained
5 = 1.08	refinement
600 reflections	$\Delta \rho_{\rm max} = 1.45 \ {\rm e} \ {\rm \AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -2.11 \text{ e} \text{ Å}^{-3}$
restraints	·

Table 1

Selected bond lengths (Å).

Symmetry code: (i) x, y + 1, z - 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1W-H1A\cdots O2^{ii}$	0.84 (7)	2.10 (7)	2.934 (6)	174 (5)
$D1W-H1B\cdots Br2^{iii}$	0.83 (5)	2.65 (6)	3.467 (4)	169 (6)

Symmetry codes: (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

We thank Changchun Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2426).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, S.-L., Ji, W.-Z., Hou, J.-F. & Tian, D.-K. (2005). Chin. J. Inorg. Chem. 1, 30–34.

Ma, J.-F., Liu, J.-F., Xing, Y., Jia, H.-Q. & Lin, Y.-H. (2000). J. Chem. Soc. Dalton Trans. pp. 2403–2407.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2011). E67, m729 [doi:10.1107/S160053681101662X]

catena-Poly[[[dibromidocadmium]- μ_2 -1,1'-(butane-1,4-diyl)bis(pyridinium-4-carboxylate)] mono-hydrate]

F. Guo, Y. Li, S. Yang and R. Chen

Comment

The design and synthesis of coordination polymers are of great interest for their intriguing architectures and potential applications (Li *et al.*, 2005). In this paper, the structure of the title compound is described.

As shown in Fig. 1, the Cd^{II} ion is six-coordinated by two Br⁻ anions and four O atoms from two butane-1,4diylbis(pyridinium-1-yl-4-carboxylate (*L*) ligands (Table 1). The two carboxylate groups of the *L* ligand display a bidentate chelating mode. The bond distances and angles are normal (Ma *et al.*, 2000). As illustrated in Fig. 2, each *L* ligand bridges two Cd^{II} ions, resulting in a one-dimensional zigzag chain, with a Cd···Cd separation of 14.630 (1) Å. O—H···O and O—H···Br hydrogen bonds (Table 2) involving the uncoordinated water molecules connect the chains.

Experimental

The ligand *L* was synthesized according to literature (Li *et al.*, 2005). A mixture of Cd(NO₃)₂.4H₂O (0.015 g), *L* (0.023 g), NaOH (0.004 g) and water (10 ml) was heated at 80°C for 25 min. After the mixture had been cooled to room temperature, colorless crystals of the title compound were obtained (yield: 43%).

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH₂) Å and with $U_{iso}(H)=1.2U_{eq}(C)$. Water H atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.84 (1) Å and with $U_{iso}(H)=1.5U_{eq}(O)$. The highest residual electron density was found at 0.33 Å from Cd1 atom and the deepest hole at 0.37 Å from Br2 atom.

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) x, 1+y, -1+z.]

Fig. 2. View of the zigzag chain.

catena-Poly[[[dibromidocadmium]-µ-1,1'-(butane-1,4- diyl)bis(pyridinium-4-carboxylate)] monohydrate]

Crystal data

$[CdBr_2(C_{16}H_{16}N_2O_4)]\cdot H_2O$	Z = 2
$M_r = 590.53$	F(000) = 572
Triclinic, <i>P</i> T	$D_{\rm x} = 2.130 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.6529 (5) Å	Cell parameters from 3238 reflections
b = 9.3969 (6) Å	$\theta = 1.5 - 26.2^{\circ}$
c = 14.0198 (9) Å	$\mu = 5.56 \text{ mm}^{-1}$
$\alpha = 74.410 \ (1)^{\circ}$	T = 296 K
$\beta = 87.060 \ (2)^{\circ}$	Block, colorless
$\gamma = 71.581 \ (1)^{\circ}$	$0.20\times0.17\times0.16~mm$
$V = 920.75 (10) \text{ Å}^3$	

Data collection

Bruker APEX CCD diffractometer	3600 independent reflections
Radiation source: fine-focus sealed tube	3238 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.013$
ϕ and ω scans	$\theta_{\text{max}} = 26.2^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.34, T_{\max} = 0.41$	$k = -7 \rightarrow 11$
5114 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: patterson
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.118$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.08	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0524P)^{2} + 9.2463P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3600 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
241 parameters	$\Delta \rho_{max} = 1.45 \text{ e } \text{\AA}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -2.11 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.47375 (5)	1.16457 (5)	0.24196 (3)	0.01263 (13)

C1	0.7499 (8)	0.9542 (7)	0.3709 (4)	0.0134 (11)
C2	1.1656 (8)	0.6169 (7)	0.4914 (4)	0.0131 (11)
H4	1.2521	0.5317	0.4764	0.016*
C3	1.0287 (8)	0.7160 (7)	0.4228 (4)	0.0149 (11)
H3	1.0244	0.6995	0.3606	0.018*
C4	0.8966 (8)	0.8412 (7)	0.4467 (4)	0.0130 (11)
C5	0.9054 (8)	0.8616 (7)	0.5403 (4)	0.0142 (11)
Н6	0.8164	0.9424	0.5585	0.017*
C6	1.0467 (8)	0.7616 (6)	0.6065 (4)	0.0129 (11)
Н5	1.0537	0.7760	0.6691	0.015*
C7	1.3272 (8)	0.5417 (7)	0.6535 (4)	0.0136 (11)
H7A	1.3690	0.6045	0.6861	0.016*
H7B	1.4298	0.4894	0.6187	0.016*
C8	1.2649 (8)	0.4214 (7)	0.7305 (4)	0.0144 (11)
H8A	1.2521	0.3430	0.7008	0.017*
H8B	1.1457	0.4711	0.7539	0.017*
С9	1.4043 (8)	0.3444 (7)	0.8174 (4)	0.0135 (11)
H9A	1.5276	0.3192	0.7923	0.016*
H9B	1.3945	0.4173	0.8565	0.016*
C10	1.3755 (8)	0.1972 (7)	0.8834 (4)	0.0135 (11)
H10A	1.3859	0.1243	0.8442	0.016*
H10B	1.4723	0.1495	0.9349	0.016*
C11	1.1690 (8)	0.2881 (7)	1.0082 (4)	0.0157 (12)
H11	1.2593	0.3246	1.0254	0.019*
C12	1.0140 (8)	0.2988 (7)	1.0617 (4)	0.0154 (11)
H12	0.9988	0.3416	1.1153	0.019*
C13	0.8779 (8)	0.2448 (6)	1.0353 (4)	0.0127 (11)
C14	0.9010 (8)	0.1903 (7)	0.9516 (4)	0.0138 (11)
H14	0.8086	0.1604	0.9299	0.017*
C15	1.0608 (8)	0.1803 (7)	0.9003 (4)	0.0144 (11)
H15	1.0771	0.1422	0.8446	0.017*
C16	0.7200 (8)	0.2339 (7)	1.1034 (4)	0.0146 (11)
N1	1.1736 (7)	0.6442 (6)	0.5809 (3)	0.0123 (9)
N2	1.1936 (6)	0.2255 (5)	0.9307 (3)	0.0103 (9)
01	0.7496 (6)	0.9313 (5)	0.2877 (3)	0.0158 (8)
O2	0.6345 (6)	1.0670 (5)	0.3958 (3)	0.0169 (9)
O3	0.6036 (6)	0.1791 (5)	1.0807 (3)	0.0171 (9)
O4	0.7215 (6)	0.2727 (5)	1.1822 (3)	0.0181 (9)
Br1	0.24542 (9)	1.43346 (8)	0.24021 (6)	0.0306 (2)
Br2	0.26563 (10)	0.98804 (8)	0.25061 (5)	0.02913 (19)
O1W	0.4919 (7)	0.2586 (5)	0.5341 (3)	0.0234 (10)
H1A	0.529 (11)	0.199 (8)	0.497 (5)	0.035*
H1B	0.539 (11)	0.207 (9)	0.590 (3)	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cd1	0.0110 (2)	0.0143 (2)	0.0108 (2)	-0.00276 (16)	0.00083 (14)	-0.00187 (15)

supplementary materials

C1	0.015 (3)	0.014 (3)	0.013 (3)	-0.008 (2)	0.001 (2)	-0.002 (2)
C2	0.015 (3)	0.014 (3)	0.012 (3)	-0.006 (2)	0.001 (2)	-0.004 (2)
C3	0.019 (3)	0.016 (3)	0.011 (3)	-0.007 (2)	0.001 (2)	-0.005 (2)
C4	0.013 (3)	0.014 (3)	0.014 (3)	-0.007 (2)	0.001 (2)	-0.003 (2)
C5	0.015 (3)	0.014 (3)	0.014 (3)	-0.004 (2)	0.004 (2)	-0.005 (2)
C6	0.017 (3)	0.011 (3)	0.010 (3)	-0.004 (2)	0.003 (2)	-0.003 (2)
C7	0.012 (3)	0.017 (3)	0.011 (3)	-0.005 (2)	-0.002 (2)	0.000 (2)
C8	0.011 (3)	0.014 (3)	0.016 (3)	-0.006 (2)	-0.001 (2)	0.001 (2)
C9	0.013 (3)	0.015 (3)	0.011 (3)	-0.005 (2)	0.001 (2)	0.000 (2)
C10	0.011 (3)	0.015 (3)	0.012 (3)	-0.002 (2)	0.003 (2)	-0.003 (2)
C11	0.016 (3)	0.020 (3)	0.013 (3)	-0.009 (2)	0.000 (2)	-0.004 (2)
C12	0.017 (3)	0.017 (3)	0.013 (3)	-0.004 (2)	0.001 (2)	-0.005 (2)
C13	0.014 (3)	0.009 (3)	0.012 (3)	-0.002 (2)	0.000 (2)	-0.001 (2)
C14	0.016 (3)	0.013 (3)	0.011 (3)	-0.005 (2)	-0.003 (2)	-0.001 (2)
C15	0.015 (3)	0.014 (3)	0.014 (3)	-0.005 (2)	0.000 (2)	-0.003 (2)
C16	0.015 (3)	0.012 (3)	0.014 (3)	-0.002 (2)	0.001 (2)	-0.002 (2)
N1	0.015 (2)	0.012 (2)	0.010 (2)	-0.0066 (19)	0.0010 (18)	-0.0004 (18)
N2	0.012 (2)	0.010 (2)	0.008 (2)	-0.0035 (18)	0.0005 (17)	0.0000 (17)
01	0.017 (2)	0.017 (2)	0.012 (2)	-0.0024 (17)	-0.0020 (16)	-0.0040 (16)
O2	0.020 (2)	0.017 (2)	0.012 (2)	-0.0018 (17)	-0.0011 (16)	-0.0040 (16)
O3	0.014 (2)	0.026 (2)	0.012 (2)	-0.0086 (18)	0.0017 (15)	-0.0031 (17)
O4	0.017 (2)	0.025 (2)	0.015 (2)	-0.0080 (18)	0.0052 (16)	-0.0081 (18)
Br1	0.0196 (3)	0.0228 (4)	0.0477 (5)	-0.0041 (3)	0.0005 (3)	-0.0095 (3)
Br2	0.0287 (4)	0.0294 (4)	0.0303 (4)	-0.0093 (3)	0.0054 (3)	-0.0102 (3)
O1W	0.030 (3)	0.018 (2)	0.020 (2)	-0.005 (2)	0.0032 (19)	-0.0052 (18)

Geometric parameters (Å, °)

2.476 (4)	C8—H8A	0.9700
2.345 (4)	C8—H8B	0.9700
2.409 (4)	C9—C10	1.518 (8)
2.435 (4)	С9—Н9А	0.9700
2.5728 (8)	С9—Н9В	0.9700
2.6162 (8)	C10—N2	1.487 (7)
1.241 (7)	C10—H10A	0.9700
1.266 (7)	C10—H10B	0.9700
1.510 (8)	C11—N2	1.347 (7)
1.354 (7)	C11—C12	1.361 (8)
1.377 (8)	C11—H11	0.9300
0.9300	C12—C13	1.398 (8)
1.394 (8)	С12—Н12	0.9300
0.9300	C13—C14	1.385 (8)
1.383 (8)	C13—C16	1.513 (8)
1.380 (8)	C14—C15	1.376 (8)
0.9300	C14—H14	0.9300
1.338 (7)	C15—N2	1.345 (7)
0.9300	C15—H15	0.9300
1.491 (7)	C16—O3	1.252 (7)
1.517 (8)	C16—O4	1.254 (7)
	2.476 (4) 2.345 (4) 2.409 (4) 2.435 (4) 2.5728 (8) 2.6162 (8) 1.241 (7) 1.266 (7) 1.510 (8) 1.354 (7) 1.377 (8) 0.9300 1.394 (8) 0.9300 1.383 (8) 1.380 (8) 0.9300 1.338 (7) 0.9300 1.491 (7) 1.517 (8)	2.476(4) $C8$ —H8A $2.345(4)$ $C8$ —H8B $2.409(4)$ $C9$ —C10 $2.435(4)$ $C9$ —H9A $2.5728(8)$ $C9$ —H9B $2.6162(8)$ $C10$ —N2 $1.241(7)$ $C10$ —H10A $1.266(7)$ $C10$ —H10B $1.510(8)$ $C11$ —N2 $1.354(7)$ $C11$ —C12 $1.377(8)$ $C11$ —H11 0.9300 $C12$ —C13 $1.394(8)$ $C12$ —H12 0.9300 $C13$ —C14 $1.380(8)$ $C14$ —C15 0.9300 $C15$ —N2 0.9300 $C15$ —H15 $1.491(7)$ $C16$ —O3 $1.517(8)$ $C16$ —O4

С7—Н7А	0.9700	O1W—H1A	0.84 (7)
С7—Н7В	0.9700	O1W—H1B	0.83 (5)
C8—C9	1.522 (8)		
O2-Cd1-O3 ⁱ	127.10 (14)	С8—С7—Н7В	109.5
O2—Cd1—O4 ⁱ	86.07 (15)	H7A—C7—H7B	108.1
O3 ⁱ —Cd1—O4 ⁱ	54.49 (14)	С7—С8—С9	110.3 (5)
O2—Cd1—O1	54.51 (14)	С7—С8—Н8А	109.6
O3 ⁱ —Cd1—O1	81.38 (14)	С9—С8—Н8А	109.6
O4 ⁱ —Cd1—O1	78.10 (14)	С7—С8—Н8В	109.6
O2—Cd1—Br1	106.91 (10)	С9—С8—Н8В	109.6
O3 ⁱ —Cd1—Br1	108.36 (11)	H8A—C8—H8B	108.1
O4 ⁱ —Cd1—Br1	92.51 (10)	С10—С9—С8	112.4 (5)
O1—Cd1—Br1	159.25 (10)	С10—С9—Н9А	109.1
O2—Cd1—Br2	104.34 (11)	С8—С9—Н9А	109.1
O3 ⁱ —Cd1—Br2	103.49 (10)	С10—С9—Н9В	109.1
O4 ⁱ —Cd1—Br2	156.16 (10)	С8—С9—Н9В	109.1
O1—Cd1—Br2	90.43 (10)	Н9А—С9—Н9В	107.8
Br1—Cd1—Br2	104.48 (3)	N2—C10—C9	113.1 (5)
O2—Cd1—C16 ⁱ	106.48 (16)	N2	108.9
O3 ⁱ —Cd1—C16 ⁱ	27.25 (16)	C9—C10—H10A	108.9
O4 ⁱ —Cd1—C16 ⁱ	27.32 (16)	N2	108.9
O1—Cd1—C16 ⁱ	76.82 (15)	C9—C10—H10B	108.9
Br1—Cd1—C16 ⁱ	103.21 (12)	H10A—C10—H10B	107.8
Br2—Cd1—C16 ⁱ	129.79 (12)	N2-C11-C12	121.1 (5)
O2—Cd1—C1	27.52 (16)	N2	119.5
O3 ⁱ —Cd1—C1	104.69 (16)	C12—C11—H11	119.5
O4 ⁱ —Cd1—C1	81.35 (16)	C11—C12—C13	119.4 (5)
O1—Cd1—C1	26.99 (15)	C11—C12—H12	120.3
Br1—Cd1—C1	133.92 (12)	C13—C12—H12	120.3
Br2—Cd1—C1	97.91 (12)	C14—C13—C12	118.4 (5)
C16 ⁱ —Cd1—C1	91.88 (17)	C14—C13—C16	122.0 (5)
O1—C1—O2	123.8 (5)	C12—C13—C16	119.3 (5)
O1—C1—C4	118.2 (5)	C15—C14—C13	120.0 (5)
O2—C1—C4	118.0 (5)	C15—C14—H14	120.0
O1—C1—Cd1	64.9 (3)	C13—C14—H14	120.0
O2—C1—Cd1	58.9 (3)	N2—C15—C14	120.1 (5)
C4—C1—Cd1	176.8 (4)	N2—C15—H15	120.0
N1	119.7 (5)	C14—C15—H15	120.0
N1 - C2 - H4	120.2	03 - 016 - 04	124.4 (0)
$C_{3} = C_{2} = C_{4}$	120.2	03 - 010 - 013	118.3(3) 116.9(5)
$C_2 = C_3 = C_4$	119.9 (5)		61.8 (2)
$C_2 = C_3 = H_2$	120.1	03-010-011	62 0 (2)
	120.1		05.0 (5)
05-04-03	118.7 (5)	C13—C16—Cd1"	170.2 (4)

supplementary materials

C5—C4—C1	120.9 (5)	C6—N1—C2	121.7 (5)
C3—C4—C1	120.4 (5)	C6—N1—C7	118.6 (5)
C6—C5—C4	119.7 (5)	C2—N1—C7	119.8 (5)
С6—С5—Н6	120.1	C15—N2—C11	120.8 (5)
С4—С5—Н6	120.1	C15—N2—C10	120.3 (5)
N1—C6—C5	120.3 (5)	C11—N2—C10	118.7 (5)
N1—C6—H5	119.9	C1	88.1 (3)
С5—С6—Н5	119.9	C1—O2—Cd1	93.6 (3)
N1—C7—C8	110.8 (4)	C16—O3—Cd1 ⁱⁱ	90.9 (3)
N1—C7—H7A	109.5	C16—O4—Cd1 ⁱⁱ	89.7 (4)
С8—С7—Н7А	109.5	H1A—O1W—H1B	105 (8)
N1—C7—H7B	109.5		
Symmetry codes: (i) x , $y+1$, $z-1$; (ii) x ,	<i>y</i> -1, <i>z</i> +1.		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1A···O2 ⁱⁱⁱ	0.84 (7)	2.10(7)	2.934 (6)	174 (5)
O1W—H1B···Br2 ^{iv}	0.83 (5)	2.65 (6)	3.467 (4)	169 (6)
Summatry order: (iii) $x \rightarrow 1$ z : (iv) $-x + 1 - y + 1$	_ _ _+1			

Symmetry codes: (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.

Fig. 1

Fig. 2

